Equation of the Line Problem

Here is a nice little problem from the Irish Leaving Certificate maths paper (2016, paper 2, question 1, part a). It is asking us to find the equation of the line for the line between point B and |AC|, where the line is ⊥ to |AC|.

005

We know the equation of the line to be y=mx+c, but as we don’t know c of the |Bc| ⊥ to |AC| we find ourselves a little stuck. We know |Bc| is ⊥ to |AC| ∴ m pertaining to |Bc| is the negative reciprocal (m-1) of the m pertaining to |AC|. This helps. So to stop us getting confused over which m belongs to which line we will rename them m1 and m2, where m1 belongs to |AC| and m2 belongs to |Bc|. Also note the difference between C and c. C is the point (-3,4) on the |AC| and c is where the |Bc| ⊥ to |AC| intersects the y axis.

Finding the slop of |AC|

This is a simple matter of calculating the differential of the two given points (A and C) on the |AC|, and we know this to be m=Δy/Δx. Thus:

m1=Δy/Δx
m= (y2-y1)/(x2-x1)
m= (4- -2)/(-3 – 6)
∴ m= -2/3 ∨ -0.666

Finding the negative reciprocal

Now that we have the value of m1 as -2/3 and we know that m2 is is the negative reciprocal of  m1 (or the m1-1), then all we have to do is the following:

m2=m1-1∨ -1/m1
m2 = -1/(-2/3)
∴ m2 = 3/2

Solving the Equation of the Line

Now we are ready to solve the equation of the line for |Bc|, remembering that B is (5,3).

y=mx+c
3 = (32)(5) + c
3 = 7.5 + c
3 – 7.5 = c
∴ c = -4.5

In this case the equation of the line (y=mx+c) may be expressed 3=(3/2)(5)-4.5. And with this our problem has been solved. As always, if you have any comments or problems please post them in the Thoughts and Questions section below. Thanks for reading.

Advertisements

Thoughts and Questions

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s